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Abstract: The DNA damage response and repair (DDR/R) network, a sum of hierarchically
structured signaling pathways that recognize and repair DNA damage, and the immune response to
endogenous and/or exogenous threats, act synergistically to enhance cellular defense. On the other
hand, a deregulated interplay between these systems underlines inflammatory diseases including
malignancies and chronic systemic autoimmune diseases, such as systemic lupus erythematosus,
systemic sclerosis, and rheumatoid arthritis. Patients with these diseases are characterized by aberrant
immune response to self-antigens with widespread production of autoantibodies and multiple-tissue
injury, as well as by the presence of increased oxidative stress. Recent data demonstrate accumulation
of endogenous DNA damage in peripheral blood mononuclear cells from these patients, which is
related to (a) augmented DNA damage formation, at least partly due to the induction of oxidative stress,
and (b) epigenetically regulated functional abnormalities of fundamental DNA repair mechanisms.
Because endogenous DNA damage accumulation has serious consequences for cellular health,
including genomic instability and enhancement of an aberrant immune response, these results can be
exploited for understanding pathogenesis and progression of systemic autoimmune diseases, as well
as for the development of new treatments.

Keywords: DNA damage response and repair network; immune response; autoimmunity; systemic
lupus erythematosus; systemic sclerosis; rheumatoid arthritis; oxidative stress; abasic sites; chromatin
organization; apoptosis

1. Introduction

The human genome confronts thousands of DNA lesions every day due to normal “mistakes”
during DNA replication, or exposure to exogenous or endogenous “toxic” factors, which can block
the replication process, lead to genomic instability, and threaten cell function and homeostasis [1].
To ensure proper cell function and viability, a well-organized mechanism, namely, DNA damage
response and repair (DDR/R) network, has been evolved over the years. DDR/R is a hierarchically
structured mechanism, the main aspects of which are conserved from prokaryotes and phages to
humans [2], consisting of sensors, mediators, transducers, and effectors, which recognize any defects
during the cell cycle and assign the proper repair process [1]. In case of unrepaired lesions and
depending on the extent and type of damage, the cell either passes the mutated genome to its offspring
or is neutralized by programmed cell death (apoptosis) or senescence [2].
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The interplay between DDR/R and innate immune response has been increasingly recognized in
the past years. Several studies have demonstrated that a shift in the balance of DDR/R network driven
by either exposure to DNA-damaging agents or deregulation of DNA repair mechanisms results in the
accumulation of cytosolic single-stranded DNAs (ssDNAs) and double-stranded DNAs (dsDNAs) that
can act as potent immunostimulators through the induction of the cGAS-STING (stimulator of interferon
genes)-IRF3 pathway and the production of type I interferon (IFN) [3–11]. Moreover, recent studies
have shown that cell cycle progression through mitosis following DNA double-strand breaks (DSBs)
formation and DDR/R induction leads to the generation of micronuclei, which precede activation of the
immune system [12–14]. On the other hand, loss of immune homeostasis and prolonged inflammatory
response generated by different sources (infection, radiation, toxins, autoimmunity, ageing, etc.) can
lead to DNA damage and activate the DDR/R network [15–21], proposing a bi-directional relationship
between DDR/R and immune response (ImmR) [2].

Systemic autoimmune disorders comprise a heterogeneous group of diseases characterized by
aberrant immune response to self-antigens with widespread production of autoantibodies and multiple
tissue injury, as well as by oxidative stress along with the excess production of reactive oxygen
species (ROS) and reactive nitrogen species (RNS). Inappropriate activation of adaptive immunity and
production of autoantibodies has been classically linked to autoimmunity, whereas innate immune
activation and, specifically, the recognition of nucleic acids by Toll-like receptors and other cytoplasmic
innate immune receptors, are considered as part of the pathophysiology of autoimmune diseases [22].

Aberrant DDR/R has been reported in patients with systemic autoimmune diseases, such as
systemic lupus erythematosus (SLE) [3,4], systemic sclerosis (SSc) [23], and rheumatoid arthritis
(RA) [24,25]. Polymorphisms of nucleases or molecules central in the DNA repair process have been
detected with increased frequency among patients with autoimmune diseases, whereas gene/protein
expression assays have shown downregulation of molecular components that are implicated in
the DNA repair machinery and upregulation of apoptosis genes among patients with autoimmune
disease [4]. However, only a few studies to date have examined the burden of DNA damage in
patients with systemic autoimmune diseases and mechanistic aspects underlying this phenomenon.
Whether aberrant DDR/R response precedes immune activation in autoimmune diseases or the chronic
immune activation/inflammation leads to increased DNA damage formation and deregulation of DNA
repair mechanisms remains largely unknown. Recently, our group suggested a role of deficient DNA
repair and increased formation of endogenous DNA damage, at least partly due to the induction
of oxidative stress, that may lead both to augmented apoptosis rates and subsequent autoantibody
production in patients with SLE [3,4].

In the current review, we first briefly overview the normal DDR/R pathways and highlight DDR/R
aberrations and critical endogenous factors/processes that lead to the intracellular formation of DNA
damage, which are observed in systemic autoimmune diseases. The main goal of this review is to serve
as a “tool” for the comprehensive presentation of up-to-date literature on the subject and thus help in
the design of new mechanistic studies to better understand the involvement of the DDR/R network in
the pathogenesis of systemic autoimmunity, as well as to suggest new therapeutic perspectives and
potential targets.

2. Normal DNA Repair Pathways

To compensate for the many types of DNA damage that occur, cells have developed multiple
repair mechanisms wherein each corrects a different subset of lesions. In general, there are six major
DNA repair pathways, which will be presented below.

2.1. Nucleotide Excision Repair (NER)

NER is a fundamental DNA repair mechanism involved in the removal of bulky, helix-distorting
lesions from DNA [26]. DNA adducts that are repaired by NER include cyclobutane pyrimidine dimers
(CPDs) and 6-4 photoproducts (6-4 PPs) produced by UV radiation, DNA lesions generated by ROS or
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endogenous lipid peroxidation products, intrastrand cross-links and adducts produced by genotoxic
drugs (melphalan, cisplatin), or environmental carcinogens (benzo[a]pyrene) [27,28]. There are two
subpathways of NER, termed GGR (global genome repair) and TCR (transcription-coupled repair),
where approximately 30 proteins are involved in both subpathways. The first step, the recognition of
DNA damage, differs between the two subpathways. In GGR, the formation of a bulky DNA adduct
induces an increase in helix distortion, which facilitates the recruitment of the damage recognition
factor XPC/RAD23/CETN2 and UV-DDB. On the other hand, damage recognition in TCR is initiated
when an elongating RNA polymerase II (RNAPII) is arrested upon encountering a site of DNA damage.
Subsequently, two TCR-specific proteins, Cockayne syndrome A (CSA) and B (CSB), are thought to
displace the stalled RNAPII to allow the access of the NER proteins to the lesion. Following damage
recognition, both GGR and TCR proceed through common NER reactions. The biological importance
of NER for human health is obvious by the fact that defects in this repair pathway cause several
human genetic disorders, including Cockayne syndrome (CS), xeroderma pigmentosum (XP), and
trichothiodystrophy (TTD), which are all associated with photosensitivity [29].

2.2. Base Excision Repair (BER)

BER is a conserved and ubiquitous DNA repair pathway, which recognizes and removes damaged
DNA bases that do not significantly distort the structure of the DNA helix [30]. BER is used by the cell
to correct DNA lesions that occur through the spontaneous deamination or hydroxylation of bases
and by oxidation of nucleotides by ROS produced either by normal metabolism or environmental
stresses such as smoking, oxidizing chemicals, or ionizing radiation [31]. In addition, BER is implicated
in the repair of alkylated DNA bases generated by endogenous or exogenous factors (carcinogens,
antineoplastic drugs, etc.), which if left unrepaired produce mutations in the cells [32]. BER consists of
two subpathways, known as single-nucleotide or short-patch and long-patch; the activation of one or
the other is predicated by the cause and type of damage, the type of abasic (AP; apurinic/apyrimidinic)
site generated in the first repair step and the cell cycle phase in progress when the damage occurs.
The short-patch pathway quickly repairs single-base damage during the G1 phase; the long-patch
pathway handles lengthier repair during S or G2, when resynthesis of two to eight nucleotides
surrounding the AP-site is required. Among the enzymes that take part in BER, DNA glycosylases,
mono- or bi-functional, are the most important. They recognize and hydrolyze the N-glycosylic bond
between the damaged base and the sugar phosphate backbone, creating an AP intermediate site.

2.3. Mismatch Repair (MMR)

MMR mechanism is a major contributor to replication fidelity, which removes base substitution
and insertion/deletion mismatches that arise as a result of replication errors escaping the proofreading
function of DNA polymerases [33]. The recognition of DNA lesions is accomplished by the complex
Mutator Sα (MUTSα), a heterodimer of the DNA mismatch repair proteins Mutator S homolog 2
(MSH2) and Mutator S homolog 6 (MSH6). Another heterodimer complex, called MUTSβ, which
consists of MSH2 and MSH3, is able to bind only to insertion/deletion mismatches. Lesion recognition
is followed by the recruitment of Mutator Lα (MutLα) [MLH1/postmeiotic segregation increased 2
(PMS2)] or MutLβ (MLH1/MLH3), which have endonuclease activity that can incise DNA near the
mismatch. The nick is used by the 5′ exonuclease 1 (Exo1) as an entry point to degrade DNA past the
mismatch, and the resulting single-stranded DNA gap is filled in by polymerase δ and sealed with
DNA ligase I [34,35]. Deficiencies in MMR lead to microsatellite instability (MSI), which is a pattern of
hypermutation that occurs at genomic microsatellites, and is associated with unique clinical features,
prognosis and response to therapy, and immune checkpoint blockade [36,37].

2.4. Double-Strand Breaks (DSBs) Repair

DSBs may occur as a result of exposure to both exogenous factors, including ionizing radiation,
UV light and genotoxic drugs [38], and endogenous events, including oxidative stress, replication fork
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collapse, and telomere erosion [39]. Of interest, these lesions also occur as programmed events during
meiosis, as well as during V(D)J recombination [the process by which T cells and B cells randomly
assemble different gene segments—known as variable (V), diversity (D) and joining (J) genes—in order
to generate unique receptors (known as antigen receptors) that can collectively recognize many different
types of molecule] and class-switch recombination (CSR) required for immunoglobulin diversity and
function [40]. DSBs, if left unrepaired, have severe adverse consequences for the cell including the
generation of mutations, chromosomal aberrations, and cell death [41]. To maintain genomic integrity,
cells have evolved several pathways to remove DSBs.

2.4.1. Homologous Recombination Repair (HRR)

HRR is an error-free DNA repair mechanism, which operates during the S and G2 phases of the
cell cycle so that it can find a large area of homology on a sister chromatid to use as a template for
resynthesizing damaged or lost bases [42]. HRR can be divided into several steps. During initiation,
both the 5′-ends of the DSB are resected by the action of a specific nuclease to yield 3′-single-strand
DNA (3′-ssDNA) tails. Then, one of these tails invades an intact homologous duplex and generates
a D-loop structure, while the other could simply anneal with the displaced strand at the joint. Both
3′-ends then prime new DNA synthesis using the intact duplex as a template. This process, followed by
ligation, leads to the formation of two Holliday junctions (four-stranded branched structures), which
are finally cleaved by the action of a resolvase [43].

2.4.2. Canonical Non-Homologous End Joining (c-NHEJ)

c-NHEJ is an error-prone process, which is active throughout the entire cell cycle. C-NHEJ is
initiated by the binding of the heterodimeric protein complex X-ray repair cross complementing
5/6 to both DNA ends. Then, DNA-dependent protein kinase (DNA-PK) is recruited, a DNA
dependant protein kinase, which activates X-ray repair cross-complementing protein 4 (XRCC4)-ligase
IV complex to link the broken DNA ends together. However, before re-ligation, MRN complex
(MRE11-Rad50-NBS1), together with the Flap Endonuclease 1 (FEN1) and Artemis, are involved in
processing DNA ends [44,45]. Aberrant c-NHEJ is a major source of genomic rearrangements and
chromosomal translocations, leading to genomic instability [46]. Interestingly, deficient c-NHEJ is
associated with defective V(D)J recombination and immune defects [47]. The choice between c-NHEJ
and HRR pathways is regulated by complex regulatory mechanisms and involves competition between
the p53-binding protein 1 (53BP1), which favors c-NHEJ, and BReast CAncer gene 1 (BRCA1), which
promotes HRR. Methylation of histone H4 by Multiple Myeloma SET (MMSET) results in 53BP1
recruitment at the DSB site, which blocks DNA end resection by the MRN complex, C-terminal binding
protein 1 interacting protein (CtIP), and BRCA1. On the other hand, histone H4 acetylation by the
Tat-interactive protein (Tip60) blocks 53BP1 recruitment and promotes BRCA1 occupancy and HRR.
Cell cycle-regulated proteins such as cyclin-dependent kinases also play a key role in the choice of
pathway to resolve DSBs [38].

2.4.3. Alternative Non-Homologous End Joining (alt-NHEJ)

alt-NHEJ is a mechanistically distinct pathway of DSB repair that is frequently termed
microhomology-mediated end-joining [48]. Indeed, the foremost distinguishing property of alt-NHEJ
is the use of 5–25 base pair microhomologous sequences during the alignment of broken ends before
joining, thereby resulting in deletions flanking the original break [49]. Thus, alt-NHEJ is frequently
associated with chromosome abnormalities including translocations, deletions, and inversions [50].
The viewpoint that alt-NHEJ is the major DNA repair pathway to pathogenic chromosomal errors is
further strengthened by the finding that c-NHEJ-deficient mice develop tumors with chromosomal
translocations generated by alt-NHEJ [51].



Int. J. Mol. Sci. 2020, 21, 55 5 of 24

2.4.4. Single-Strand Annealing (SSA)

SSA is a highly mutagenic but very efficient DSB repair mechanism [38,52]. This process
involves a DSB between homologous repeats, followed by DSB end resection that generates 3′-ssDNA,
which reveals flanking homologous sequences that are annealed together to form a synapsed
intermediate. This intermediate is then processed for ligation, which requires endonucleolytic
cleavage of nonhomologous 3′-ssDNA tails, and polymerase filling of the gaps. Genetically, SSA
is distinct from other homologous recombination pathways, as it occurs independently of Rad51
recombinase. Instead, it depends on Rad59, the Rad52 paralog that is structurally homologous to
the N-terminus of Rad52. Biochemically, both Rad52 and Rad59 can anneal ssDNA, but only Rad52
can anneal ssDNA coated with RPA proteins. Although relatively mutagenic in terms of causing a
rearrangement between repeat elements, SSA is critical to restore a broken chromosome with DSB ends
that have undergone extensive end resection, but are unable to be resolved by HRR or alt-NHEJ [53].
The importance of SSA in DNA repair depends on a number of factors, including the state of the cell
cycle, the presence or absence of the sister chromatid, and the length of uninterrupted homology.

2.5. Interstrand Cross-Link (ICL) Repair

The formation of cross-links between the two strands of DNA is considered a critical event, causing
cell cycle and replication arrest and eventually cell death if not repaired [54]. Cross-linking agents are
exogenous chemicals, including the drugs cyclophosphamide, melphalan, cisplatin, mitomycin C, and
psoralen [55], as well as endogenously formed aldehydes [56]. There are three routes for cross-link
detection in mammalian cells. Adducts can be recognized in otherwise unperturbed duplex DNA by
factors that recognize DNA damage. Cross-link detection might also occur via encounter with the
transcription machinery. Finally, ICLs could block a replication fork, triggering a repair response that
would remove the cross-link and restore replication. Interestingly, in non-replicating cells, the repair
of ICL is mediated by the NER mechanism and by the DNA translocase FANCM, which facilitates
the access of nucleases to the lesion. In S-phase cells, cross-link repair is coupled to DNA replication,
features DSBs as repair intermediates, and depends on the homologous recombination machinery [57].
ICL repair in human cells is accomplished in four distinct steps: (a) unhooking of the ICL on one
strand and induction of a DNA replication-dependent DSB, (b) translesion DNA synthesis using the
DNA strand with the unhooked ICL as a template, (c) processing of the DSB and restoration of the
stalled DNA replication fork, and (d) removal of the residual unhooked ICL [58]. Proteins implicated
in the repair of ICLs have a critical role in the pathophysiology of several hereditary disorders,
such as Fanconi anemia, xeroderma pigmentosum, Cockayne syndrome, cerebro-oculo-facio-skeletal
syndrome, and trichothyodistrophy.

2.6. Direct Repair Pathway

The direct repair mechanism is a single step pathway, which is unique in that only one protein
is implicated in the repair process [59]. Indeed, the sole protein involved, O6-methylguanine-DNA
methyltransferase (MGMT), removes alkyl groups from the O6 position of guanine or to a lesser
extent from the O4 position of thymine, such as those generated by treatment with alkylating
drugs (procarbazine, dacarbazine, temozolomide), and transfers it to an internal cysteine residue
of MGMT [60]. Because the alkyl group is covalently bound to the MGMT protein, MGMT is
functionally inactivated after each reaction, and degraded through the ubiquitin proteolytic pathway.
Without MGMT repair, alkyl adducts would cause thymine mispairing during replication, leading to
G:C to A:T transitions or strand breaks [61]. Overactivity of MGMT is also considered responsible
for chemoresistance; for example, >90% of recurrent gliomas show no response to a second cycle
of chemotherapy. Conversely, inhibition of MGMT renders cancer cells sensitive to temozolomide,
whereas MGMT promoter alkylation is a significant determinant in the sensitivity of drugs such as
temozolomide. There is abundant evidence linking methylation of the MGMT promoter to loss of
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protein expression, resulting in increased sensitivity to chemotherapeutic agents and to the prognostic
outcome of patients treated. Similarly, low MGMT expression appears to be a biomarker for slower
tumor progression [62].

3. The Interplay between the DDR/R Network and the Immune Response: The Role of
Oxidative Stress

Although not completely delineated to date, interplay between the DDR/R network and the ImmR
has been suggested by a series of studies, nicely reviewed in [2]. A first hint that defective nucleic acid
metabolism may trigger aberrant innate immune activation with serious consequences for life is derived
from Aicardi-Goutières (AGS) syndrome. AGS is a childhood-onset, possibly fatal encephalopathy
characterized by mutations of central molecules implicated in DNA and RNA metabolism, such as
(a) RNaseH2, which is involved in excision of a single ribonucleotide embedded in genomic DNA and
removal of an R-loop formed in cells [63–65], or (b) the 3′–5′ exonuclease TREX1 [66–68]. On the other
hand, increasing data suggest that aberrant, chronic (auto)immune activation and chronic inflammation
may cause DNA damage and trigger the DDR/R network [4]. Indeed, under inflammatory conditions,
ROS and RNS are generated from inflammatory and epithelial cells and result in oxidative and nitrative
DNA damage, such as 8-oxo-dG and 8-nitro-dG, as well as in the inhibition of key proteins of the
DNA repair machinery, indicating the bi-directional interplay between DDR/R and ImmR via oxidative
stress [2].

The central role of type I IFN pathway activation in the pathophysiology of systemic autoimmune
diseases has been extensively studied since its first description almost 40 years ago [69,70].
The recognition of nucleic acids by innate immune receptors (Toll-like receptors (TLR) and non-TLRs)
has a central role in autoimmunity, suggesting that abnormal DNA or RNA metabolism may initiate
and/or perpetuate innate immune activation [71]. Innate immune receptors can either recognize
pathogen-derived “non-self” DNA (pathogen-associated molecular patterns, PAMPs), for example,
those derived from a DNA virus, but also damaged “self” DNA (damage-associated molecular patterns,
DAMPs) at sites of inflammation, and can initiate an immune response [2]. In physiological conditions,
DAMPs are found intracellularly; are invisible to the immune system; and serve metabolic, structural,
or enzymatic functions [72]. On the other hand, DAMPS are exposed or released upon stress, injury, and
cell death, thereby becoming able to bind appropriate receptors on immune cells. Of note, following
treatment with some anticancer drugs, such as anthracyclines (doxorubicin, epirubicin, idarubicin),
mitoxantrone, oxaliplatin, cyclophosphamide, and bortezomib, cancer cells undergo a form of cell
death named immunogenic cell death, which is characterized by an increased immunogenic potential,
owing to the emission of the DAMPs, which act as danger signals to produce immunostimulatory
effects, such as the recruitment and activation of neutrophils, macrophages, and other immune cells [73].
DAMPs released during immunogenic cell death include plasma membrane exposure of endoplasmic
reticulum chaperones such as calreticulin (CALR), secretion of ATP, release of double-stranded DNA
resulting in activation of STING and release of type I IFN and proinflammatory cytokines, secretion
CXCL10, as well as the release of high-mobility group box 1 (HMGB1) and annexin A1 (ANXA1) [74].

3.1. DNA Double-Strand Breaks Per Se Induce Innate Immune Activation

Apart from oxidative DNA damage, the presence of DSBs per se has been shown to induce type I
IFN production [5]. Indeed, treatment of healthy donor-derived primary monocytes with etoposide,
a chemotherapeutic agent that blocks topoisomerase II activity and leads to the accumulation of
DSBs, up-regulated type I IFN-induced gene expression and type III IFNs (IFN-λ). Similarly, other
DSB-inducing drugs (mitomycin C, adriamycin, etc.) were also able to induce type I and III IFNs
in primary monocytes and various cell lines, suggesting that DDR-induced IFN expression is a
universal mechanism that may underline different pathological processes [5]. In line with these
results, treatment of breast cancer cell lines with DSB-inducing drugs, including ionizing radiation
or therapeutic drugs (mitomycin C, cisplatin), led to the accumulation of cytoplasmic ssDNA and
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finally the activation of the STING-IRF3 pathway [10]. Furthermore, basic components of DSB repair
were shown to be responsible for the production of cytoplasmic ssDNA, which seems to be the main
immunostimulant [10]. Interestingly, TREX1 was found to be the main responsible nuclease for the
restriction of this cytoplasmic ssDNA and prevention of aberrant innate immune activation [6,10].
An association between immune activation and TREX1 was also observed when TREX1 null mice
developed inflammatory myocarditis due to an interferon-dependent autoimmune response leading
to dilated cardiomyopathy and a significantly reduced survival [75]. Of note, type I IFN is indeed
implicated in the inflammatory myocarditis and early mortality observed in this mouse model, as
disease manifestations were strikingly attenuated in Trex1-deficient mice also lacking the type I IFN
receptor (IFNαR1) [76], and were also improved in mice treated with an inhibitor of the downstream
kinase TANK-binding kinase 1 [77].

3.2. Defective DNA Repair and Chronic Low-Level DNA Damage “Prime” the Innate Immune Response

Another clue that defective DNA repair primes innate immune response comes from
ataxia–telengiectasia (AT), a neurodegenerative disorder associated with mutations of the central DNA
repair kinase ATM [6]. In this study, Härtlova and colleagues showed that AT-derived fibroblasts
had higher constitutive expression of type I and III IFNs and mounted a profoundly high response
upon transfection with DNA virus or the intracellular microbe Listeria monocytogenes. These results
suggested that loss of ATM, potentially leading to chronic accumulation of low-grade DNA damage,
may prime the innate immune response [6]. Similar results were obtained from ATM-deficient mice
and cell lines where ATM was silenced. Of interest, γ-irradiation or etoposide treatment of normal bone
marrow-derived myeloid cells mimicked the elevated basal expression of IFN and hyper-sensitivity
to PRR (TLR and non-TLR)-induced response observed in ATM-deficient cells, suggesting that the
accumulation of damaged DNA underlined this phenomenon. A series of mechanistic studies with
knock-out of various innate immune adaptors revealed that STING was mainly responsible for the
observed phenotype [6]. In summary, ATM deficiency led to the accumulation of DNA damage,
exportation of damaged ssDNA and dsDNA into the cytoplasm, activation of the cGAS-STING
pathway, and finally type I IFN production that primed cells for response to exogenous or endogenous
stimuli such as viral or bacterial infections (Figure 1).
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Figure 1. Induction of type I interferon (IFN) expression by endogenous DNA damage. (A) Exogenous
and/or endogenous genotoxic agents may lead to the accumulation of DNA damage in the nucleus,
followed by exportation of damaged DNA into the cytoplasm and the induction of micronuclei.
(B) Damaged cytoplasmic DNA, if it is not cleared by the exonuclease Trex1, activates the cGAS-STING
(stimulator of interferon genes)-IRF3 pathway and the production of type I IFN. ROS: reactive oxygen
species, RNS: reactive nitrogen species, CPDs: cyclobutane pyrimidine dimers.
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Moreover, Günther and colleagues suggested that defective ribonucleotide removal and
accumulation of base lesions and low-grade DNA damage “primed” ImmR [69]. Indeed, they
showed that fibroblasts from AGS and SLE patients with mutations in the DNA repair enzyme
RNaseH2 produced increased levels of IFNβ upon stimulation with poly(I:C), a phenomenon that
was enhanced when poly(I:C) treatment was combined with UVC irradiation. In the same study,
patients’ fibroblasts showed a decreased proliferation rate in vitro, increased p53 phosphorylation
at Ser15, and senescence. Of interest, RNaseH2 deficiency in heterozygous carriers (parents of AGS
patients) significantly increased the prevalence of antinuclear antibodies (ANAs), suggesting that
defective ribonucleotide removal may promote formation of autoantibodies [69]. Type I IFN activation
in RNaseH2-null cells was also shown to be mediated by STING [11]. That is, dermal fibroblasts
isolated from AGS/SLE patients with RNaseH2 mutations and mouse embryonic fibroblasts (MEFs)
isolated from RNaseH2-null mice showed significantly increased single-strand breaks (SSBs) and DSBs
and were also more sensitive to UV-irradiation, as shown by increased CPD formation.

3.3. Micronuclei: Connecting Nuclear DNA Damage and Cytosolic Innate Immune Receptors

The strict compartmentalization of DNA in the cell’s nucleus and mitochondria raises the question
as to how damaged self DNA becomes accessible to STING, which resides in the cytoplasm. Recent
sophisticated studies connected the dots featuring a new role for micronuclei [70]. Micronuclei are
components of the nuclear membrane encompassing DNA, which are released in the cytoplasm during
mitotic cell division. Two independent studies showed that RNaseH2-null cells, which have been
previously shown to express higher levels of IFN-induced genes, probably through a STING-mediated
pathway [11,69], have increased numbers of micronuclei in their cytoplasm [12,14]. Of note, the
majority of micronuclei were enriched for cGAS, which is essential for the production of cGAMP, the
activator of STING [71].

3.4. Oxidative Stress Causes DNA Damage That Activates the Immune System

Cellular oxidative damage is a general mechanism of cell and tissue injury, which is primarily
caused by free radicals and ROS. ROS are chemically reactive molecules containing an oxygen atom.
Although normally ROS are essential elements of the ImmR involved in cytokine production, microbial
clearance, cell proliferation, and cell death, overproduction and/or inadequate removal of these species
results in oxidative stress [78].

ROS are produced by both endogenous and exogenous sources. Endogenous sources include
the generation of ROS from mitochondria; peroxisomes (intracellular organelles that are also called
microbodies); activated inflammatory cells, such as macrophages, neutrophils, and eosinophils; as
well as during the metabolism of xenobiotics mediated by cytochromes P450 oxidoreductases [79].
These endogenously induced DNA lesions can often reach a level much higher than the ones induced
by environmental factors. ROS are constantly generated in mitochondria as respiration byproducts
(1–5% of consumed oxygen), and in general are accepted as the major source of oxidative injury in
aerobic organisms. Another source of constant generation of free radicals is the chronic exposure
to viral infections. The high intracellular oxidation status in viral infections consists of decreased
antioxidant enzymes such as catalase, glutathione peroxidase, glutathione reductase, as well as high
levels of hydroxyl radicals. Of note, tumor growth and development is always accompanied by
oxidative stress, which develops due to various inflammatory and immune reactions [80].

As for the extracellular sources of ROS, these include ionizing radiations such as X-, γ-, or
cosmic rays and α-particles from radon decay, oxidizing chemicals, ultraviolet A (UVA) light,
chemotherapeutics, environmental toxins, and other pollutants [78]. Exposure to extracellular sources
of ROS is especially prevalent in skin cells, as they are constantly exposed to the environment. Radiation
can react with oxygen and form superoxide anion radical, hydroxide anion, and hydroxyl radical that
are able to destroy the structural integrity of DNA. Moreover, chronic exposure to cigarette smoke
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promotes lipid peroxidation and has detrimental effects for the cardiac and respiratory systems. Some
xenobiotics appear to interfere with mitochondrial bioenergetics and promote superoxide production.

DNA lesions associated with ROS are oxidized purines and pyrimidines, SSBs, DSBs, and abasic
sites. Two of the most common endogenous DNA base modifications are 8-oxo-7,8-dihydroguanine
(8-oxoGua) and 2,6-diamino-4-hydroxy-5-formamido-pyrimidine. These lesions can be originated
from the addition of the hydroxyl radical to the C8 position of the guanine ring producing a
8-hydroxy-7,8-dihydroguanyl radical, which can be either oxidized to 8-oxoGua or reduced to give the
ring-opened 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) [81]. Moreover, interaction of
hydroxyl radical with pyrimidines (thymine and cytosine) at positions 5 or 6 of the ring can produce
several base lesions, such as 5,6-dihydroxy-5,6-dihydrothymine and 5,6-dihydroxy-5,6-dihydrocytosine.
Two other pyrimidine lesions are the 5-(hydroxymethyl) uracil and the 5-formyluracil, which are
often detected in humans as the result of the interaction of the hydroxyl radical with the methyl
group of thymine. With the interaction of the hydroxyl radicals with DNA, SSBs may also occur,
which in turn trigger the induction of DSBs. The mechanism consists of hydrogen abstraction from
the 2-deoxyribose, leading to the formation of carbon-based radicals, which under the presence of
oxygen can be converted to peroxyl radicals. The peroxyl radicals, through different reactions, can also
abstract hydrogen atoms from sugar moieties, thus leading to DNA strand breaks. The most prevalent
and characteristic abasic sites formed under oxidative stress are 2-deoxyribonolactone and the C4′

oxidized abasic site that arise from hydroxyl radical-mediated hydrogen abstraction at C1 and C4 of
the 2-deoxyribose moiety of DNA, respectively [82]. Interestingly, peroxyl radical-mediated DNA
adducts are potential precursors of apurinic sites, as the opening of the imidazole ring of the purine
bases may lead to increased hydrolytic lability of their N-glycosidic bonds. This occurrence is very
common and can occur spontaneously or enzymatically as “repair intermediates” of the BER pathway.

On exposure to oxidative stress, cells initiate a variety of defense mechanisms, including both
enzymatic and non-enzymatic antioxidants. In mammalian cells, enzymatic antioxidants include
superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and
catalase, whereas non-enzymatic antioxidants contain ascorbic acid (vitamin C), α-tocopherol (vitamin
E), total thiol, glutathione, carotenoids, and flavonoids [83]. Oxidative stress causes damage on the
primary cellular components, including DNA, proteins, and lipids. In particular, ROS-induced DNA
lesions include oxidized bases, abasic sites, single-strand breaks (SSBs), and DSBs, which during the
replication process can lead to replication fork stalling, thus giving rise to mutations and genetic
instability [84].

Accumulating evidence suggests that oxidative stress can participate in the pathogenesis,
progression, and complications of many diseases, including cancer and autoimmunity [78]. Especially
with regard to systemic autoimmune diseases, several studies have shown that SLE patients are
characterized by increased oxidative stress, resulting in immune system dysregulation, abnormal
activation and processing of cell-death signals, and autoantibody production [85]. Indeed, previous
studies have shown that oxidative stress causes a significant delay in the apoptotic clearance, resulting
in a prolonged interaction between ROS and nuclear residues, which in turn triggers neo-epitope
production and autoantibody formation [86]. In addition, oxidative stress is involved in the pathogenesis
of SSc [87]. That is, SSc patients are characterized by increased production of ROS in the skin, visceral
fibroblasts, and endothelial cells, as well as by reduced concentrations of various antioxidants, including
antioxidant vitamins (ascorbic acid, α-tocopherol, β-carotene) and minerals (zinc, selenium) [88]. Also,
oxidative stress has been observed in patients with RA. In fact, these patients show augmented
intracellular ROS, lipid peroxidation, protein oxidation, DNA damage, and deregulated antioxidant
defense system of the body. Moreover, deficient MMR system was observed in RA patients, resulting
in increased formation of DNA adducts in the joints and acceleration of the disease progression [89].
In line with these data, low levels of non-enzymatic antioxidants [reduced glutathione (GSH) and
vitamin C] were found in RA patients, as compared with healthy individuals.
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In an attempt to explain the immunogenicity of “self” DNA under inflammatory conditions,
Gehrke and colleagues used a series of in vitro experiments and revealed a role for oxidized DNA
as DAMP [90]. Indeed, they found that oxidized DNA, that is, from UV-induced damage or
from ROS released during cell death, activated the innate immune receptor STING (stimulator of
interferon genes), whereas “normal” DNA did not. Further exploring the mechanistic aspects of this
“paradox”, oxidized DNA was shown to be resistant to TREX1 degradation, thus accumulating in the
cytoplasm and activating the cGAS-STING and the type I IFN pathway. Of note, this axis, that being
oxidized DNA-cGAS-STING-type I IFN, was verified in a SLE mouse model [Murphy Roths Large
lymphoproliferation (MRL/lpr) mice], as well as in skin biopsies of patients with SLE, where oxidized
DNA co-localized with the type I IFN-induced gene myxovirus (influenza) resistance 1 (MX1) [90].

The immunogenicity of UV radiation and subsequent oxidative DNA damage, as observed in SLE
flares following sun exposure, has also been studied in preclinical models [91]. The researchers showed
that UV radiation potentiates STING-dependent activation of IFN regulatory factor 3 (IRF3; immune
signaling transcription factor) in response to cytosolic DNA and cyclic dinucleotides in keratinocytes
and other human cells. Furthermore, they found that stimulation of STING-dependent IRF3 by UV
is due to apoptotic signaling-dependent disruption of ULK1 (Unc51-like kinase 1), a pro-autophagic
protein that negatively regulates STING.

3.5. Oxidative Stress and Immune Senescence

It is generally accepted that oxidative stress induces the senescent phenotype. Cellular senescence is
a cell state implicated in various physiological processes and a wide spectrum of age-related diseases [92].
There are four different molecular mechanisms of oxidative stress-induced cell senescence: (a) the
DDR/R mechanism, in which oxidative damage stimulates the DDR/R network through activating
p53 and up-regulating p21 expression to cause senescence [93]; (b) the nuclear factor kappa B
(NF-κB) mechanism, in which oxidative stress activates the inhibitor of kappa B (IκBs) kinase, which
phosphorylates IκB to activate NF-κB and makes it transfer into the nucleus to stimulate IL-8 expression
and increase p53 protein stability and then induce cellular senescence [94]; (c) the p38 mitogen-activated
protein kinase (MAPK) mechanism, which is activated by ROS, up-regulates p19 protein expression,
and limits self-renewal (the process by which stem cells divide to make more stem cells) to induce
cellular senescence [95]; and (d) the microRNA mechanism, in which oxidative stress affects the amount
of microRNA and promotes senescence [96].

Interestingly, the senescence-induced decline of the immune system is known as
immunosenescence and is implicated in impaired autoantigen recognition and vaccination in the
elderly. Indeed, several functions of the cells involved in the innate and adaptive immune responses
are seriously compromised with age progression, including chronic inflammatory state, changes in
lymphocyte subsets, and decreased proliferative responses, among others. Recent data have shown
that during senescence, the LINE-1 retrotransposon is transcriptionally expressed and stimulates the
IFN-I response, thus contributing to the maintenance of the senescence-associated secretory phenotype,
which determines the ability of senescent cells to express and secrete cytokines, chemokines, proteases,
growth factors, and bioactive lipids [97].

Moreover, age-related transformations redesign the immune architecture and the balance between
pro-inflammatory and anti-inflammatory protective factors, as well as between pro-apoptotic and
anti-apoptotic signals. In fact, elderly people experience increased reactivity to autoantigens, loss of
tolerance, and systemic inflammation, while at the same time they suffer from degenerative diseases,
which, in turn, increase the risk of developing an autoimmune disease [98]. Moreover, epigenetic
changes and the increase in inflammatory cytokines and chemokines such as TNF-α, C-reactive protein,
IL-8, MCP1, and RANTES (Regulated on Activation, Normal T Cell Expressed and Secreted) that occur
in the elderly play a crucial role in the onset of autoimmune diseases [99].

These alterations make older persons more prone, not only to autoimmune disease, but also
to cancer, as well as metabolic, neurodegenerative, and infectious diseases [100]. In fact, infectious
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diseases account for roughly 20% of hospitalizations in the elderly, whereas one-third of deaths
in persons aged >65 years has been reported to be due to infectious diseases [101]. In addition,
immunosenescence also results in reduced responses to vaccination, a common phenomenon in the
elderly [102] Growing interest in therapeutically targeting senescence to improve healthy aging and
age-related disease with compounds known as senolytic drugs has recently led to the first clinical
trials [92].

3.6. Defects in Degradation of Endogenous DNA and Immune Activation

Apart from increased DNA damage formation and defective repair, a third mechanism may also
be implicated in the accumulation of immunogenic damaged DNA—defective DNA degradation.
Indeed, degradation of cytosolic DNA by TREX1 is integral for the prevention of aberrant innate
immune responses [76]. Although previous mechanistic studies have revealed TREX1 as the main
nuclease for removal of oxidized DNA, DNAse II may also have an important role in prevention of
misplaced innate immune response, as DNAse II-deficient mice have been shown to spontaneously
develop polyarthritis mimicking RA [103].

4. The DDR/R Network in Systemic Autoimmune Diseases

4.1. Systemic Lupus Erythematosus

SLE is a prototypic autoimmune disease characterized by abnormal T and B cell responses, in which
excessive antibody production and immune complex formation are considered central pathogenetic
mechanisms [104]. In the past years, innate immunity and specifically the recognition of nucleic acids
by TLRs and cytoplasmic receptors have also been gaining attention as critical components in SLE
pathogenesis [105]. The first hint that abnormalities in DDR/R pathway may be involved in SLE
pathophysiology comes from the increased frequency of polymorphisms of central molecules involved
in the DDR/R pathway such as TREX1 [106]. Moreover, autoantibodies against components of the
DDR pathway have been detected in approximately 10%–20% of patients with SLE [107]. Deficiencies
in DNA repair have been shown to induce lupus-like disease in animals. Mice carrying the Y265C
hypomorphic allele of POLB (DNA polymerase, beta; a key enzyme in BER mechanism) demonstrated
several pathologies resembling lupus, such as nephritis and skin manifestations, along with high titers
of anti-nuclear antibodies in serum [108]. Moreover, mice with compound deficiency in Gadd45β
(Growth arrest and DNA-damage-inducible, beta) and Gadd45γ proteins, which are involved in
DDR/R as well as in initiation of the type 1 helper T cell (Th1) response, showed features resembling
lupus, such as antibodies against dsDNA and histones in sera, and immune complex deposits in renal
glomeruli [109].

4.1.1. Gene Polymorphisms Associated with Impaired DNA Repair Machinery and SLE

Data from two cohort studies evaluated the association of the most common polymorphisms
of XRCC1, a ligase protein involved in BER, with SLE susceptibility. The rs25487 single-nucleotide
polymorphism (SNP), which encodes an arginine to glutamine substitution at position 399 (R399Q)
was found to be associated with high titer of anti-dsDNA antibodies in Brazilian SLE patients,
whereas the presence of two common SNPs was associated with neuropsychiatric manifestations
and antiphospholipid syndrome [110]. At the same time, a Chinese Han population cohort study
revealed that individuals with the aforementioned SNP are nearly two times more prone to develop
SLE compared with healthy controls [111]. Polymorphisms in another key enzyme of BER, Polβ,
have also been associated with SLE in two large, independent cohort studies of a Chinese Han
population [112,113]. Poly (Adenosine diphosphate-ribose) polymerase 1 (PARP1), a core protein of
BER and DSB repair mechanisms, is also implicated in the susceptibility for SLE development. Indeed,
a genetic analysis of chromosome 1q41-q42 revealed that a specific allele of PARP1, with a length
of approximately 85bp, confers defective DNA repair and abnormal apoptosis, thus predisposing
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to SLE [114]. The contribution of polymorphisms in DDR/R components to the development and
progression of SLE has been recently reviewed here [115].

4.1.2. Increased Endogenous DNA Damage in SLE: Defective Repair or Increased Formation?

We have previously shown that peripheral blood mononuclear cells (PBMCs) from SLE patients
display defects in two main DNA repair pathways, namely, NER and DSB repair [3,4]. Specifically,
study of the formation of N-alkylpurine-monoadducts (almost exclusively repaired by NER) at the
N-ras (neuroblastoma RAS) locus, the repair rate of which is representative of the total cellular NER
capacity, and phosphorylated H2AX (γ-H2AX), a sensitive marker for DNA DSBs that was measured
at the level of the whole cell, revealed that SLE patients with nephritis have approximately 3–5 times
higher intrinsic DNA damage compared with healthy controls. Of interest, patients with quiescent
disease also exhibited increased levels of DNA damage, although lower than patients with nephritis,
suggesting that DNA damage levels may also be associated with disease activity. Following ex vivo
treatment of PBMCs with genotoxic drugs such as melphalan or cisplatin, we also observed that
SLE patients were defective in NER and DSB repair mechanisms [3,4]. Accordingly, genes involved
in NER [DNA damage-binding protein 1 (DDB1), excision repair cross-complementation group 2
(ERCC2), Xeroderma pigmentosum complementation group A (XPA), Xeroderma pigmentosum
complementation group C (XPC)] and DSBs repair [Bloom syndrome RecQ like helicase (BLM),
checkpoint kinase 1 (CHEK1), HUS1 checkpoint clamp component (HUS1), Meiotic Recombination 11
Homolog A (MRE11A), Nijmegen Breakage Syndrome 1 (Nibrin; NBN), RAD50, RAD51, Replication
Protein A1 (RPA1), tumor protein p53 binding protein 1 (TP53BP1), X-ray repair cross complementing
2 (XRCC2), X-ray repair cross complementing 6 (XRCC6)] were significantly downregulated in SLE
patients compared with healthy controls [4]. In line with previous data showing that epigenetic
dysregulation (particularly global hypomethylation in T cells) is well documented in SLE [116], we also
found that SLE patients are characterized by more condensed chromatin structure at the N-ras locus
than their matched controls [4]. Moreover, in accordance with previous data showing that the histone
deacetylase inhibitor (HDACi) vorinostat reverses the abnormal chromatin compaction that impedes
the access of DNA repair proteins to sites of DNA damage, we found that treatment of PBMCs from
quiescent SLE patients with this drug resulted in increased efficiency of the DNA repair machinery
and decreased DNA damage burden of these cells [4]. Also, B lymphoblastoid cell lines isolated from
children with lupus provided adequate information of defects in the repair of DNA DSBs. Indeed,
results from neutral comet assay and colony survival assay showed delayed DSBs repair that might
contribute further to the progression of autoimmunity, according to the writers [117]. In addition,
previous studies have reported that neutrophils from SLE patients are characterized by increased DNA
damage, defective repair of oxidative DNA damage, and augmented apoptosis rates [118,119]. Of note,
recent data suggest that the enhanced generation of neutrophil extracellular traps (NETosis) driven by
mitochondrial ROS promotes externalization of pro-inflammatory oxidized mtDNA and subsequent
activation of STING-dependent type I IFN signaling pathway in SLE [120].

In line with our results [4], another research group, which obtained gene expression profiles from
SLE patients and healthy individuals, reported downregulation of genes classified in cell cycle sensors
(ATPase/ATPase domain-containing genes) and in NER pathway (ERCC2/XPD and ERCC5/XPG) [121].
Indeed, the team concluded that ATP depletion in combination with downregulation of ATP-dependent
genes ERCC2 and ERCC5 suggest insufficient DNA repair in SLE patients, resulting in increased
apoptosis and perpetuation of autoimmunity. Moreover, in order to identify rare alleles associated
with SLE, Delgado-Vega and colleagues performed whole exome sequencing in SLE patients from
well-studied Icelandic SLE multi-case families [122]. They found rare, possibly pathogenic variants in
19 genes, including the X-ray repair cross-complementation group 6 binding protein 1 (XRCC6BP1),
also termed Ku70-binding protein 3 (KUB3). Of note, the XRCC6 protein, which is involved in NHEJ
required for DSB repair pathway and V(D)J recombination, is a well-established lupus autoantigen.
Defective PARP1 activity has also been found in PBMCs from SLE patients [123]. In that particular
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study, Cerboni and colleagues showed that the activity of PARP1 after UV radiation was significantly
lower in SLE patients than in healthy controls, suggesting that PARP1 is implicated in the susceptibility
for SLE development.

4.1.3. Autoantibodies against DNA Repair Enzymes

The two subunits of Ku protein (Ku70 and Ku80) involved in NHEJ and the DNA-dependent
protein kinase (DNA-PK), a pivotal component of the DNA repair machinery that governs the response
to DNA damage and is also involved in V(D)J recombination, are known targets of autoantibodies in
SLE. Moreover, ELISA and immunoblotting assays in sera from a total of 155 patients with systemic
autoimmune diseases identified two more proteins of NHEJ pathway, namely, DNA ligase IV and
XRCC4, as autoantibody targets in approximately 20% of SLE patients [124]. Another research
group studied by immunoprecipitation the correlation between anti-Ku antibodies in SLE sera
and antibodies against four different DNA repair proteins (DNA-PK, PARP, Mre11, and Werner
protein) and found that more than 50% of anti-Ku positive sera contained at least one out of four
autoantibodies, providing further evidence that abnormal DSB repair influences the development
of certain autoimmune diseases [125]. Recently, Luo and colleagues, using a commercial human
protein microarray platform bearing over 9400 antigens, compared the autoantibody profile of SLE
patients with those of healthy controls and found novel autoantibodies that were related to DNA repair
pathways and apoptosis [126]. Interestingly, they observed that the levels of autoantibodies against
Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1), High mobility group box 1 (HMGB1),
vaccinia-related kinase 1 (VRK1), Aurora-A kinase (AURKA), peptidyl arginine deiminase 4 (PADI4),
and signal recognition particle 19 (SRP19) (all involved in the DDR/R pathways) were positively
correlated with the level of anti-dsDNA in SLE patients, suggesting that these autoantibodies may play
a critical role in the pathogenesis of SLE.

4.1.4. Defects in Apoptosis and SLE Pathogenesis

Recent studies suggest that either dysregulated apoptosis or defects in dead cell clearance
contribute to the perpetuation of autoimmunity and SLE pathogenesis [127]. GWAS studies in the
previous years have identified at least eight different genes that function in the clearance of apoptotic
cells, finding that their underexpression is related with the development of SLE or a similar phenotype
of autoimmunity [128]. Analysis of bone marrow immune cells by immunochemistry from 14 SLE
patients (5 of them presented active lupus nephritis at the moment of the bone marrow biopsy) revealed
a significantly higher percentage of apoptotic cells than in controls, which was also positively correlated
with the number of plasmacytoid dendritic cells, the major type I IFN-a producer [129]. Interestingly,
our previous studies have shown that genotoxic drug-induced apoptosis rates were higher in PBMCs
from quiescent SLE patients than healthy controls and correlated inversely with DNA repair efficiency,
supporting the hypothesis that accumulation of DNA damage contributes to increased apoptosis [3,4].
Also, the same cells after vorinostat treatment showed a suppressed apoptotic rate through modifications
in the degree of the chromatin condensation. Accordingly, several apoptosis-associated genes [Protein
phosphatase 1 regulatory subunit 15A (PPP1R15A), cyclin-dependent kinase inhibitor 1A (CDKN1A),
BRCA1-associated RING domain protein 1 (BARD1), RAD21, RAD9 checkpoint clamp component A
(RAD9A), Protein Kinase, DNA-Activated, Catalytic Subunit (PRKDC), Calcium and integrin-binding
protein 1 (CIB1), BRCA1, Abelson murine leukemia viral oncogene homolog 1 (ABL1), checkpoint
kinase 2 (CHEK2), and Bcl-2-binding component 3 (BBC3)] were found to be significantly overexpressed
in SLE compared with healthy controls [4]. Taken together, in these studies we proposed that SLE
patients are characterized by lower DNA repair capacity, resulting in the accumulation of DNA damage
and the induction of the apoptotic pathway.

Of note, studies in lupus animal models have proven an association between defective apoptosis
and SLE development. Indeed, macrophages from mice lacking the intracellular receptor of the
membrane tyrosine kinase c-mer (Merkd mice) present in vivo impaired clearance of apoptotic
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bodies [130]. Moreover, these mice develop a lupus-like autoimmunity phenotype with autoantibodies
to ssDNA and dsDNA and renal pathology. In addition, Shao and Cohen reported that mice lacking
the T cell immunoglobulin mucin 4 (TIM-4), a phosphatidylserine receptor that assists phagocytosis of
apoptotic debris by macrophages, develop autoantibodies to dsDNA (hallmark of SLE), suggesting
that this protein is an important component for dead cell clearance [25].

4.2. Systemic Sclerosis

Systemic sclerosis is a connective tissue disorder characterized by vascular alterations,
autoantibody production, and fibrosis of skin and internal organs [131]. Although the pathophysiology
of SSc remains largely unknown, oxidative stress has been implicated in the development and
perpetuation of SSc [132]. In fibroblasts isolated from the skin of patients with diffuse SSc, levels of
ROS and type I collagen are significantly higher and the amounts of free thiol are significantly lower
when compared to normal fibroblasts [133]. Moreover, sera from patients with diffuse SSc and lung
fibrosis contain elevated levels of advanced oxidation protein products (AOPPs) compared to sera
from healthy individuals or from patients with limited SSc and no lung fibrosis [134]. AOPPS are
able to induce hydrogen peroxide production by endothelial cells. Similarly, in vitro treatment of
endothelial cells with sera from patients with either limited or diffuse SSc induced higher hydrogen
peroxide production compared to sera from healthy individuals [134]. AOPPs are also able to induce
proliferation of fibroblasts. Of interest, in vitro synthesized AOPPs, from DNA topoisomerase 1
oxidized by hypochlorous acid or hydroxyl radicals, increased the proliferation of fibroblasts and
the production of hydrogen peroxide by endothelial cells compared to AOPP generated from other
proteins [134]. In line with these results, oxidative stress induced by either immunoglobulins isolated
from SSc patients or by oxidative DNA-damaging agents led to decreased Wingless inhibitory factor 1
(WIF-1) expression in SSc fibroblasts and was associated with higher collagen production. This effect,
mediated by the central DDR kinase ATM, linked oxidative stress and DNA damage with fibrosis,
suggesting an important role of the DDR/R pathway in pathogenesis of fibrosing conditions such
as SSc [135]. On the other hand, inhibition of ATM in SSc fibroblasts with the competitive inhibitor
KU55933 (KuDOS 55933) significantly increased the expression of the WIF-1 gene, suggesting a
therapeutic benefit from targeting components of the DDR/R [135].

Moreover, increased DNA damage levels have also been detected in the peripheral blood of patients
with SSc, regardless of disease subtype (diffuse or limited SSc) or treatment [23]. To examine whether
DNA damage is a result of dysfunction of DNA repair enzymes, DNA damage and polymorphic sites
in two genes encoding DNA repair enzymes XRCC1 [arginine to glutamine polymorphism at position
399 (Arg399Gln)] and XRCC4 [Isoleucine to threonine polymorphism at position 401 (Ile401Thr)] were
evaluated. Regarding the XRCC1 gene, healthy individuals with the Arg399Gln allele presented higher
levels of DNA damage compared with healthy individuals with the XRCC1 wild type, something that
was not observed in SSc patients. However, SSc patients with either XRCC1 allele presented increased
DNA damage compared to healthy individuals. Regarding the XRCC4 gene, both healthy individuals
and SSc patients with the Ile401Thr allele presented higher levels of DNA damage compared to healthy
individuals or SSc patients with the XRCC4 wild type allele [23]. Together, these results indicate that
SSc patients with polymorphisms at genes of DNA repair enzymes are characterized by increased
DNA damage. Of interest, XRCC4 was also found to be enriched in patients with diffuse SSc in a study
using whole-exome sequencing (WES) in 32 diffuse cutaneous systemic sclerosis (dcSSc) patients and
17 healthy controls [136].

4.3. Rheumatoid Arthritis

The role of oxidative DNA damage and aberrations of the DDR/R network have been long studied
in RA [137]. Initial studies reported overexpression and tissue-specific mutations of p53, a central
molecule in DNA repair and regulator of apoptosis, in the synovium of patients with RA [138,139]. P53
mutations were characteristically detected at the lining region of the synovium [140], which mainly
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consists of fibroblast-like synoviocytes (FLS), the “maestro” of synovial inflammatory milieu [141],
and macrophage-like synoviocytes. Immunohistochemical analysis of RA synovial tissues revealed
compensatory up-regulation of MMR enzymes, especially in the synovial lining, which, however,
did not completely invert the observed oxidative damage [142]. Of interest, neutrophils isolated
from synovial fluid of RA patients also displayed increased DNA damage levels when compared to
osteoarthritic controls [143]. Extracellular mitochondrial DNA and 8-oxo-2′-deoxyguanosine (8-oxodG)
DNA was also detected in synovial fluid from RA patients but not in controls [144].

Further, we and others have detected increased endogenous DNA damage levels in peripheral
blood (PBMCs or granulocytes) of patients with RA compared with healthy controls [24,89,143].
Of interest, a positive correlation of endogenous DNA damage levels in PBMCs/peripheral blood
neutrophils with the disease activity index DAS-28 has also been observed [89,143]. Previous studies
have reported lower levels of DNA damage in neutrophils and T cells of patients under treatment
compared with treatment-naïve patients. [143,145]. In line with these results, in our recent study
we examined paired samples from patients before and after 12 week antirheumatic treatment and
observed a significant decrease in the endogenous DNA damage levels [24].

Accumulation of the endogenous DNA damage in cells can be mediated either by augmented
endogenous DNA damage formation and/or delayed/decreased efficiency of the DNA repair
mechanisms, two possibilities that are not mutually exclusive. Numerous studies have shown
increased levels of oxidative stress in RA PBMCs/neutrophils in correlation with endogenous DNA
damage levels [24,89,143]. Increased levels of 8-oxodG have also been found in DNA of peripheral
blood lymphocytes, CD4+ T cells, and granulocytes of RA patients [145,146]. Further, we have recently
shown that abasic site formation, the most common spontaneously occurring DNA lesion, is also
increased in patients with RA [24].

On the other hand, previous studies have shown significant defects in the DNA repair capacity
of RA patients in association with increased senescence and apoptosis [145,146]. When cultured, RA
lymphocytes showed increased apoptotic rates in association with spontaneous accumulation of DNA
damage [145], whereas they were also more sensitive to hydrogen peroxide-induced DNA damage and
growth-arrest [146]. Further, RA T cells were more sensitive to ionizing radiation and showed delayed
repair of DNA damage. Several sensors of DSBs were down-regulated in RA T cells (ATM, Rad50,
MRE11, and NBS1) in the basal state and also failed to increase in response to radiation-induced DNA
damage [145]. Of note, recent studies have shown that MRE11A, in addition to its DNA repair activity,
plays a critical role in mitochondria protection, as the deficiency of MRE11A in RA T cells disrupted
mitochondrial oxygen consumption; suppressed ATP generation; caused leakage of mitochondrial
DNA into the cytosol; and induced inflammasome assembly, caspase-1 activation, and pyroptotic cell
death [147]. In line with these results, we have recently shown that RA PBMCs are characterized by
decreased repairing capacity, mainly due to defects in the global genome repair (GGR) pathway of
NER, directly controlled by the degree of chromatin condensation, and we also showed that 3 month
treatment with antirheumatic drugs reversed the observed phenotype [24].

Taken together, accumulation of endogenous DNA damage, derived from augmented formation
of DNA damage and deregulated DDR/R signals, which are both reversible after therapy, is implicated
in the pathogenesis of RA. Last but not least, although Shao and colleagues [145] failed to spot similar
deficiencies in components of the DNA repair machinery in SLE-derived CD4+ T cells, we have
previously shown strong down-regulation of both ATM and MRE11 complex in PBMCs of patients
with quiescent SLE [4]. The possibility of a shared defective mechanism among autoimmune diseases
is rather tempting, taking into consideration the central role of nucleic acid metabolism and recognition
in initialization and perpetuation of autoimmunity (Figure 1) [22].

5. Conclusion and Future Directions

The DDR/R network and the ImmR act synergistically for the survival of all living organisms.
Aberrant activation of each one of these systems often leads to chronic and potentially fatal systemic
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autoimmune diseases. As reviewed herein, a balance shift in DDR/R may negatively affect ImmR;
evidently, the opposite also may occur. As depicted in Figure 2, we propose that epigenetically
regulated functional abnormalities of DNA repair mechanisms (i.e., downregulation of DDR/R-related
genes and condensed chromatin structure that result in defective repair) and increased endogenous
DNA damage formation, partly due to the induction of oxidative stress, may result in the augmented
accumulation of DNA damage (both SSBs and DSBs). This accumulation may trigger the induction of
apoptosis, which facilitates autoantibody production, as well as the generation of damaged cytosolic
DNA and micronuclei that both can act as potent immunostimulators through the induction of the
cGAS-STING-IRF3 pathway and the production of type I IFN, leading to systemic autoimmune disease
expression. Notably, some of the components are partially reversible following histone hyperacetylation.
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Because targeting the DDR/R network can have an impact not only on cancer cells but also on
host immunity, manipulation of molecular components of this network, alone or in combination with
immune checkpoint inhibitors, has gained significant attention in cancer immunotherapy [148,149].
Although these approaches have been extensively studied in cancer, promising results have also been
revealed in preclinical mouse models of autoimmunity. Therapeutic targeting of T lymphocytes from
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autoimmune disease patients with DDR/R inhibitors is based on their high proliferation rate and
accumulation of DNA damage [150]. Indeed, in mice with experimental autoimmune encephalitis, the
combination of p53 activators and CHK1/2 inhibitors led to the elimination of pathogenic, activated
T lymphocytes with no side-toxicity of normal T cells. In addition, our recent data have shown
that treatment of human SLE-derived PBMCs with the HDACi vorinostat results in hyperacetylation
of histone H4, chromatin decondensation, restoration of the DNA repair capacity, and decreased
apoptosis rates [4]. These results are in line with previous data, showing that HDACi ameliorate
disease in lupus mouse models [151–153]. Also, treatment of lupus-prone Mrl/lpr mice with the
HDACi panobinostat significantly reduced circulating naïve B and plasma cell numbers and the
levels of autoantibodies [154]. More importantly, in children with systemic-onset juvenile idiopathic
arthritis, the HDACi givinostat was found to be safe and beneficial, particularly in reducing the arthritic
features, suggesting that HDACi may have important clinical applications in the treatment of systemic
autoimmunity [155]. On the other hand, restoration of defective DNA repair factors, such as MRE11A,
has also shown promising results in reducing the pro-inflammatory, pro-arthritogenic capacity of
RA T-cells in vivo [156], whereas ATM overexpression in RA T cells was able to invert the observed
apoptotic phenotype [145].

Taken together, the results reviewed herein suggest that the deregulated interplay between DDR/R
and ImmR plays a crucial role in the pathogenesis and progression of systemic autoimmune diseases.
Thus, unraveling the molecular mechanisms of this interplay can be exploited for understanding
pathogenesis and progression of these diseases, as well as to discover new treatment opportunities in
the field.

Author Contributions: Conceptualization, V.L.S., N.I.V., and P.P.S.; writing—review and editing, V.L.S., N.I.V.,
M.P., A.A., P.A.N., and P.P.S.; all authors have read and approved the submitted version. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by an educational grant (National and Kapodistrian University of Athens
ELKE, grant number 0974) and a PhD scholarship to M.P. by IKY (2018-050-0502-13136).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078.
[CrossRef] [PubMed]

2. Pateras, I.S.; Havaki, S.; Nikitopoulou, X.; Vougas, K.; Townsend, P.A.; Panayiotidis, M.I.; Georgakilas, A.G.;
Gorgoulis, V.G. The DNA damage response and immune signaling alliance: Is it good or bad? Nature
decides when and where. Pharmacol. Ther. 2015, 154, 36–56. [CrossRef] [PubMed]

3. Souliotis, V.L.; Sfikakis, P.P. Increased DNA double-strand breaks and enhanced apoptosis in patients with
lupus nephritis. Lupus 2015, 24, 804–815. [CrossRef] [PubMed]

4. Souliotis, V.L.; Vougas, K.; Gorgoulis, V.G.; Sfikakis, P.P. Defective DNA repair and chromatin organization
in patients with quiescent systemic lupus erythematosus. Arthritis Res. Ther. 2016, 18, 182. [CrossRef]
[PubMed]

5. Brzostek-Racine, S.; Gordon, C.; Van Scoy, S.; Reich, N.C. The DNA damage response induces IFN. J. Immunol.
2011, 187, 5336–5345. [CrossRef]

6. Härtlova, A.; Erttmann, S.F.; Raffi, F.A.; Schmalz, A.M.; Resch, U.; Anugula, S.; Lienenklaus, S.; Nilsson, L.M.;
Kröger, A.; Nilsson, J.A.; et al. DNA damage primes the type I interferon system via the cytosolic DNA
sensor STING to promote anti-microbial innate immunity. Immunity 2015, 42, 332–343.

7. Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunological Effects of Conventional
Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015, 28, 690–714. [CrossRef]

8. Shen, Y.J.; Le Bert, N.; Chitre, A.A.; Koo, C.X.; Nga, X.H.; Ho, S.S.W.; Khatoo, M.; Tan, N.Y.; Ishii, K.J.;
Gasser, S. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma
cells. Cell Rep. 2015, 11, 460–473. [CrossRef]

9. Nakad, R.; Schumacher, B. DNA Damage Response and Immune Defense: Links and Mechanisms.
Front. Genet. 2016, 7, 147. [CrossRef]

http://dx.doi.org/10.1038/nature08467
http://www.ncbi.nlm.nih.gov/pubmed/19847258
http://dx.doi.org/10.1016/j.pharmthera.2015.06.011
http://www.ncbi.nlm.nih.gov/pubmed/26145166
http://dx.doi.org/10.1177/0961203314565413
http://www.ncbi.nlm.nih.gov/pubmed/25542905
http://dx.doi.org/10.1186/s13075-016-1081-3
http://www.ncbi.nlm.nih.gov/pubmed/27492607
http://dx.doi.org/10.4049/jimmunol.1100040
http://dx.doi.org/10.1016/j.ccell.2015.10.012
http://dx.doi.org/10.1016/j.celrep.2015.03.041
http://dx.doi.org/10.3389/fgene.2016.00147


Int. J. Mol. Sci. 2020, 21, 55 18 of 24

10. Erdal, E.; Haider, S.; Rehwinkel, J.; Harris, A.L.; McHugh, P.J. A prosurvival DNA damage-induced
cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev.
2017, 31, 353–369. [CrossRef]

11. Mackenzie, K.J.; Carroll, P.; Lettice, L.; Tarnauskaitė, Ž.; Reddy, K.; Dix, F.; Revuelta, A.; Abbondati, E.;
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